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Objective

Overview
• Clara NP: A web interface leveraging Falcon-7b-instruct 

generative AI to enhance nursing education by mitigating 

hallucinations and biases.

Upcoming Showcase
• Set for presentation at the AAAI Conference on Artificial 

Intelligence 2024, highlighting our methodology, interface 

testing, and hallucination reduction techniques.

Latest Developments
• Focus on the ongoing work, particularly the application of 

Reinforcement Learning with Human Feedback (RLHF).

• Aim to improve user interaction capabilities through state-of-

the-art research.

Integration of RLHF
• RLHF is central to our research agenda, aimed at enhancing 

large language model capabilities within ClaraNP.

• Process involves leveraging pre-trained models and specialized 

datasets for question and answer generation, fine-tuned with 

RLHF.

Role of Expert Input
• Input from nursing education professors at UNCW crucially 

guides the learning direction, ensuring AI-generated outputs 

align with human expectations and academic literature.

Enhancements through RLHF
• RLHF seeks to align AI behavior more closely with human 

intentions and ethical standards, enhancing model reliability 

and safety.

• Aims to provide nursing students with relevant, 

comprehensible content, deepening their understanding.

Impact on AI Interfaces
• The RLHF approach not only enhances AI system reliability 

and safety but also paves the way for more intuitive and user-

friendly AI interfaces.

ClaraNP development

Language Model Preparation
• Initialization & Libraries: Imported libraries for PDF processing, text 

manipulation, and AI model deployment, including document parsing and 

text segmentation tools.

• Model Configuration: Set up pre-trained models such as Instructor XL, 

SBERT MPNet base, and FLAN T5 base for language model preparation.

o SBERT MPNet was selected for its utilization of Siamese and 

transformer architectures to produce deeply semantic sentence 

embeddings, enhancing comprehension. 

o In conjunction, Falcon-7B-instruct was chosen for its advanced 

language processing paired with SBERT's embeddings to maximize the 

accuracy and utility of content in nursing education.

• PDF-Based QA System Framework: This architecture encompasses the 

initial configuration of models and embeddings, the creation of vector 

databases from PDF content, and the setup of retrieval QA mechanisms. 

• Output Refinement and Iterative Querying: Cleans language model 

outputs, eliminating extraneous tags and spaces for clearer answers. 

Implements a pre-prompt and enables iterative querying with a loop, 

assessing ten variations of each query for improved accuracy.

Hallucination Mitigation
• PDF Processing and Text Extraction: Utilized PDF handling and 

tokenizing libraries such as pdfminer, scikit-learn, and TensorFlow. 

o Defined functions for reading, tokenizing, and truncating PDF text, 

with an optical character recognition(OCR) fallback using pytesseract 

for text extraction from photocopies.

• Advanced Tokenization and Encoding: Implemented the AllenAI's 

Longformer Encoder-Decoder (LED) model for tokenizing and encoding, 

specifically using the 'led-large-16384-pubmed' checkpoint.

• Semantic Similarity and Keyword Ranking: Established a Siamese 

neural network (SNN) and a keyword ranking model employing a Jaccard 

similarity algorithm.
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Where 𝑆𝑆𝑆𝑁 represent the SNN score and 𝑆𝑘𝑒𝑦𝑤𝑜𝑟𝑑 represent the Jaccard 

keyword similarity. The weighted average  is 𝑆𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑.

Table 1 : Accuracy Module Output for Incrementally 
Augmented Model Responses

# of 

Fallacies
Cosine Similarity 

Index

SNN Similarity 

Index

Accuracy 

Index

0 1 0.50923615694046 0.85277085

1 0.92977880422880 0.542960226535797 0.81373323

2 0.860045393911641 0.542955815792083 0.76491852

3 0.720578573277321 0.51461923122406 0.65879077

4 0.581111752643 0.514575839042663 0.56115098

5 0.41840046190296 0.510691344738006 0.44608773

6 0.3486670515858 0.510729908943176 0.39728591

7 0.2324447010572 0.443137675523757 0.29565259

8 0.1162223505286 0.444635421037673 0.21474627

9 0 0.450810253620147 0.13524308

Experiment and Preliminary Results 

RLHF Framework

• Experiment Setup: Generated series of 10 outputs by 

prompting a model to make quiz questions 10% less specific 

with each iteration, evaluating with ClaraNP using scores 

(𝑊_𝑆𝑁𝑁 = 0.6, 𝑊_𝑘𝑒𝑦𝑤𝑜𝑟𝑑 = 0.4).

• Early Findings: ClaraNP preferred original answers, 

aligning somewhat with human evaluators. This indicates a 

promising direction for prioritizing content relevance and 

authenticity.

• Limitations: Potential bias towards longer answers by the 

keyword similarity algorithm needs addressing, as it might 

favor length over correctness. 
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Nursing's history is significant 

for the future of the profession 
because it provides a foundation 

for understanding the present 

status of the profession and the 
challenges it faces. It also 

provides lessons that nurses can 
learn from as they work to 

create a better future for the 

profession.
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Figure 1: ClaraNP with RLHF 
Adapted from Labellerr. 2023. Reinforcement Learning from Human Feedback. 

https://www.labellerr.com/blog/reinforcement-learning-fromhuman-feedback/.

Implementation RLHF

Present our ClaraNP interface and the envisioned integration of 

Reinforcement Learning with Human Feedback (RLHF)
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